Технологии очистки воды

Главная | Карта сайта | Контакты | Ссылки

Projet Ecologique Transnational Transnational Ecological Project Русская версия ТЭП
   


Очистка сточных вод от ПАВ

Очистка сточных вод от красителей

Очистка сточных вод от фенола

Вакуумные технологии очистки воды

Мембранные технологии

Обратный осмос

Нанофильтрация

Ультрафильтрации - керамика

Ультрафильтрации - полимеры

Электродиализ

Первапорация

Электрофлотация

Фильтр-прессы

Сорбционные технологии

Выпарные установки

Требования ПДК



Оборотное водоснабжение


РХТУ им. Д.И. Менделеева



Министерство природных ресурсов



Лучший экологический проект года



Переработка твердых отходов


Утилизация твердых отходов

В химической и нефтехимической промышленности образуются многочисленные твердые отходы, различающиеся по своему происхождению и составу. Ввиду большого многообразия этих отходов предложить обобщенную схему их утилизации и обезвреживания не представляется возможным, поэтому рассмотрим основные методы применительно к многотоннажным отходам производства.

Переработка фосфогипса

Фосфогипс образуется как отход в производстве фосфорной кислоты из природных фосфатов. При разложении фосфатов серной кислотой в раствор переходит фосфорная кислота и образуется труднорастворимый сульфат кальция (фосфогипс):

Ca5F(PO4)3 + 5H2SO4 = 5CaSO4 + 3H3PO4 + HF

В зависимости от температуры и концентрации получаемой кислоты сульфат кальция выделяется в форме дигидрата CaSO4 • 2H2O (гипс), полугидрата CaSO4 • 1/2Н2О или безводной соли CaSO4 (ангидрит). При получении экстракционной фосфорной кислоты дигидратным способом образуется 7,5-8,4 т влажного фосфогипса в пересчете на дигидрат. Фосфогипс (в пересчете на сухое вещество) содержит до 94% CaSO4, а также в виде примесей неразложившийся фосфат, неотмытую фосфорную кислоту, полуторные оксиды, соединения стронция, различные микропримеси (редкоземельные элементы, Mo, Co, Mn, Zn), соединения фтора.

Основными примесями, препятствующими прямому использованию фосфогипса вместо природного гипса в строительстве, являются соединения фтора и Р2Од. В России и странах СНГ в настоящее время в отвалах находится более 40 млн. т фосфогипса и ежегодно образуется около 10 млн. т этого отхода. Фосфогипс помимо загрязнения окружающей среды наносит большой экономический ущерб, поскольку до 10% себестоимости фосфорной кислоты приходится на затраты по его транспортировке и хранению. Шламохранилища занимают огромные площади земель, необходимых сельскому хозяйству.

В нашей стране и за рубежом разработано несколько направлений использования фосфогипса, ниже приводится их экономическая эффективность в расчете на 1 т отхода:

Область использования Экономический эффект, руб/т
Производство гипсовых вяжущих +3,5
Производство портланд цемента (в качестве добавок) +2,5
Производство серной кислоты и цемента -8,6
Производство серной кислоты и извести -6,6
Производство сульфата аммония -22,2
Сельское хозяйство +6,4

Процесс получения гипсовых вяжущих из фосфогипса обычно состоит из двух стадий: очистка фосфогипса от соединений фтора и фосфора и последующая дегидратация CaSO4 • 2Н2О до CaSO4 • 1/2H2О. Дегидратацию осуществляют путем обжига в печах при температуре 150-170 °С либо в автоклавах при 120-170 °С. Технология получения вяжущих освоена в промышленном масштабе, в настоящее время по этому методу перерабатывается в мире 3 млн. т фосфогипса и производится 1,9 млн. т вяжущих материалов.

В производстве цемента фосфогипс гранулируют и подсушивают в барабанных сушилках до содержания гигроскопической влаги около 5%. Использование фосфогипса уменьшает расход топлива в производстве цемента, повышает производительность печей и качество цементного клинкера.

В производстве серной кислоты и цемента высушенный фосфогипс смешивают с глиной, песком и коксом и обжигают при 1200-1400 °С. При обжиге протекают следующие реакции:

CaSO4 + 2С = CaS + 2СО2; CaS + 3CaSO4 = 4СаО + 4SO2

Процесс может быть описан суммарной реакцией:

2CaSO4 + С = 2СаО + 2SO2 + СО2

В процессе применяют небольшой избыток углерода (20-30% от стехиометрического) для компенсации его расхода на побочные реакции.

Образующийся диоксид серы направляется на окисление до SO3, который далее абсорбируется водой с получением серной кислоты.

В производстве серной кислоты и извести фосфогипс восстанавливают коксом или продуктами конверсии природного газа:

CaSO4 + 2С = CaS + 2СО2; CaSO4 + 4СО = CaS + 4СО2; CaSO4 + 4Н2 = CaS + 4Н2О

Сульфид кальция обрабатывают водой, а полученную суспензию - диоксидом углерода:

CaS + Н2О + СО = H2S + CaCO3

Полученный сероводород окисляется до диоксида серы:

H2S + 3/2О2 = SO2 + Н2О

Разработаны способы, основанные на взаимодействии предварительно приготовленного (NH4)2CO3 с фосфогипсом или на непосредственном контактировании газообразных NНз и СО2.

Разработана схема комплексной переработки фосфогипса в сульфат аммония, оксид кальция и концентрат редкоземельных элементов. Метод основан на том, что СаО, полученный из осадка СаСО3, растворяется в аммониевых солях, а редкоземельные элементы остаются в осадке. Прокаливание СаСО3 проводят при 1000 "С, полученный оксид кальция обрабатывают раствором NH4Cl с получением раствора СаСl2 и осадка редкоземельных элементов. Аммонизированный раствор СаСl2 насыщается CO2 для выделения СаСО3 и регенерации NH4Cl.

В сельском хозяйстве фосфогипс используется для гипсования солонцовых почв. При внесении в такие почвы фосфогипса (6-7 т на 1 га) происходит образование сульфата натрия, который легко вымывается. Фосфогипс рекомендуется применять в качестве местных удобрений. Использование такого удобрения экономически оправданно при отсутствии дальних перевозок (до 500 км). Использование фосфогипса не требует очистки от Р2O5 поскольку эта примесь играет положительную роль при внесении в почву.

Потребность в нашей стране в серосодержащих удобрениях составляет более 2 млн т/год.

Среди других методов переработки фосфогипса перспективным является извлечение из него элементной серы путем восстановления при температуре 1100-1200 °С.

Переработка пластмасс и эластомеров

Технологические отходы пластических масс и эластомеров образуются в отраслях, занимающихся синтезом и переработкой этих продуктов. По статистическим данным, в производстве этих отходов образуется от 5 до 35%.

Длительное время захоронение в почву и сжигание были наиболее распространенными способами уничтожения отходов пластмасс и эластомеров. Тепло, выделяющееся при сжигании, использовалось для генерирования водяного пара. Однако при сжигании происходит образование сажи от неполного сгорания полимеров, выделение токсичных газов и, как следствие, повторное загрязнение воздушного бассейна.

переработка пластмасс

К основным способам утилизации отходов пластмасс относятся: термическое разложение путем пиролиза; деполимеризация с получением исходных низкомолекулярных продуктов (мономеров, олигомеров); вторичная переработка.

Пиролиз полимеров осуществляется при температурах 800-1100 °С и позволяет получить высококалорийное топливо, сырье и полупродукты, используемые в различных технологических процессах, а также мономеры для синтеза полимеров. При пиролизе отходов полиэтилена (Т = 740 °С) образуются полезные продукты: этилен (25%), метан (16%), бензол (12%), пропилен (10%).

Установка термического пиролиза включает дробилку, шнековый питатель, печь пиролиза, скруббер для промывки пирогаза, холодильник, ректификационную колонну разделения углеводородов и камеру сжигания отходящих газов. В случае переработки поливинилхлорида предусматривается скруббер для поглощения НСl. Печь пиролиза отходов представляет собой обогреваемую вертикальную цилиндрическую камеру, в которой измельченные пластмассовые отходы перемещаются под действием силы тяжести вниз, а продукты пиролиза из верхней части печи направляются на переработку.

Разработаны процессы каталитического гидрокрекинга для превращения полимерных отходов в бензин и масла.

Процессу деполимеризации с получением мономеров подвергают только те виды пластмасс, которые распадаются при сравнительно низких температурах (300-450 °С). К таким полимерам относятся полистирол и его сополимеры, полиакрилаты. Пиролиз полистирола сопровождается получением 50-70% исходного стирола, при термическом разложении полиметилметакрилата выход газообразного метилметакрилата достигает 91-96%.

Наиболее эффективным способом утилизации отходов полимерных материалов является их вторичная (а в некоторых случаях многократная) переработка. Освоены процессы переработки вышедшей из употребления полиэтиленовой пленки в трубы для сельского хозяйства и изделия менее ответственного назначения, а также во вторичную пленку. Технологический процесс получения вторичной полимерной пленки заключается в подготовке исходного сырья (использованной пленки), гранулировании и смешении полученных гранул с первичным полиэтиленом с последующим получением пленки обычными методами.

      


Рейтинг   ТрансЭкоПроект   АкваЭксперт.ру: рейтинг сайтов водной тематики Рейтинг@Mail.ru Rambler's Top100

Copyright © 2005-2012 Транснациональный экологический проект - Разработка сайта Moodle
Очистка промышленных сточных вод. Оборотное водоснабжение. Наилучшие доступные технологии.
Вся информация на данном сайте защищена авторскими правами.